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A method is proposed to solve the two-electron Schr~Sdinger equation by a rapidly converging 
iterative procedure. The wavefunction is obtained in terms of its NO's. The special features of the 
present method are: 

1. Each iteration requires only the computational equivalent of a conventional Hartree-Fock 
iteration. 

2. Within each iteration we improve simultaneously the NO's, the CI expansion coefficients and 
the total energy. 

3. The construction of a CI matrix is never required. 
We further propose simplified NO-equations the solution of which requires a small fraction of 

computertime only. As examples of the efficiency of these methods we report applications to the 
11S state of He, the 11Z,2, 13Eu+ states of H2, and IEPA, PNO-CI, and CEPA type computations on CH4. 
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1. Introduction 

It  is well  k n o w n  tha t  the  conf igura t ion  in te rac t ion  (CI) expans ion  of a two-  
e lec t ron wave funct ion 7/(1, 2) has  op t ima l  convergence proper t ies  if it is based  on 
the na tu ra l  orb i ta l s  (NO) ~0i of kg[1, 2]. This  makes  the N O ' s  most  sui ted for a CI  
t r ea tment  of two-e lec t ron  systems. The  N O ' s  of a two-e lec t ron  function which 
descr ibes  the behav iou r  of a pa i r  of  e lect rons  of an n-electron system for 
n >  2, which will be deno ted  P N O ' s  1 in this paper ,  have fu r the rmore  been 
used with advan tage  in the t r ea tmen t  of n-electron systems. This advan tage  is 
qui te  obvious  for the i ndependen t  pa i r  a p p r o x i m a t i o n  ( IEPA) [3, 4]. In the 
I E P A - P N O  m e t h o d  [5] as well as in the  re la ted  P N O - C I  and C E P A  schemes 
[6, 7] one a p p r o x i m a t e s  the t r ea tmen t  of  an n-electron system by a series of  two- 

1 PNO's (Pseudo Natural Orbitals) were introduced by Edmiston and Krauss [8] as approxima- 
tions to the NO's of the n-electron wavefunction with the idea of improving the rate of convergence 
of a CI computation. In context with the IEPA, CEPA or PNO-CI [6, 7] one considers, however, an 
individual set of PNO's for each pair of electrons and in this case it may be more appropriate to speak 
of Pair:NO's. 
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electron computations which are most conveniently performed in using the 
PNO's  of the corresponding pair function. Edmiston and Krauss [8] further 
utilized PNO's  to improve the rate of convergence of the n-electron CI calculation. 
This idea has since proved fruitful in a number of CI calculations (see e.g. Refs. 
[9, 103). 

In this work we present an efficient method for a direct determination of 
PNO's  which actually requires less amount of computational work than a con- 
ventional Hartree-Fock (HF) computation within the same basis set. This method 
furthermore yields automatically the CI coefficients and the total energy of the 
PNO-CI  wavefunction of the corresponding two-electron system and makes 
superfluous a final CI computation. We also present a simplification of the 
corresponding PNO-equations which yields good approximations to the exact 
PNO's  (a loss of less than 1% of correlation energy) and requires little computa- 
tional effort, roughly 3-5  matrix diagonalizations and matrix transformations. 
Examples of the effenciency of the present method and comparison with other 
approaches for a direct determination of PNO's  are included. 

2. Method 

Our aim is to solve a two-electron Schr6dinger equation 

H ~  = (h(1) + h(2) + 9(1, 2)) 7J(1, 2) = E 7~(1, 2) (1) 

for the spinless two-electron function 7 ~. In the absence of magnetic fields, ~ and 
the NO's  r of 7 ~ can always be chosen as real functions (the extension to complex 
7 ~ or ~Pi is no problem, however) and the N O  expansion of ~ then reads: 

(singlet case) 7J(1, 2) = ~, diqgi(1 ) ~o~(2) (2) 
i 

with ((Pi] (~j)  = (~ij (3) 

(triplet case) ~(1, 2) = ~ d~[~oi(1) ~oI (2) - r (1) ~o~(2)] (4) 
i 

with (q)il~Oj) =((]91 [~0J) .~6ij and (~o I [(pj) =0.  (5) 

[Subsequently we drop the argument and simply write qhq)2 instead of q~i(1) ~0j(2).] 
In the case of a true two-electron system h is simply the one-electron part of 

the total Hamiltonian, whereas h is an effective one-electron operator if we are 
dealing with the PNO's  of an n-electron system for n > 2 (see e.g. Refs. [5, 11]). 

In order to solve Eqs. (1), (2) or (1), (4) under the constraints (3) or (5), respec- 
tively, we use an iterative procedure. Let 7% be an approximation to the exact 
wavefunction built from approximate NO's  ~p~ with approximate CI coefficients d~. 
We now improve 7/0 by performing a CI with the trial function 

= ~o + Y', cijgPfPj. (6) 
t,J 

As the cp~pj form a linearly independent basis set the c~j are uniquely determined 
by ~ and ~o. If ~ is determined only up to an arbitrary normalization constant, 
then the cq depend, of course, on (7~[~P>. 
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The basic idea is now to introduce some simplifications into the CI equations 
for the trial function ~ in order to obtain a simple system of equations for the c~j. 
After the c o are determined one transformes ~ into its PNO expansion and uses 
this improved ~ as a new approximation ~o = ~. Since the CI equation for (6) 
is solved only approximately, an iterative procedure is necessary to obtain 
the exact d~ and ~0~. This procedure usually converges within 7 iterations. 

It furthermore has to be shown that the wavefunction and energy obtained 
in this way solve the SchrSdinger equation (1), i.e. that the approximations 
introduced do not affect the converged solutions ~ and E. 

3. Approximate Equations for ci~ 

Variation of the expectation value of the trial function as given in Eq. (6) 

e = = [< %IHI %> + 2 y~ cij< ~'olnl r  
t i,j 

i,j,k,l, j ",j 

with respect to the cij leads to the following set of equations: 

(~eolnl ~i~j) + ~ C k z ( ( o i c @ n ] ( o k ( O l ) = E ( c i j + ( ~ o l ~ P i ~ o j ) ) .  (7) 
k,l 

In order to simplify Eqs. (7) we approximate the two-electron integrals 

~i~bj ~ qSk~ l which occur in the matrix elements ((oi(o/HI (ok~t). 

We first neglect the relatively small integrals for which i r k and j r l. If now 
i = k (or similarly fo r j  =/)  we can write 

~ ~ 1 

where Ji denotes the Coulomb potential of the charge distribution ((pi)2. As the 
PNO's  are all located in the same region of space it is reasonable to assume that 
Ji ,~ J for all i, where o r is an average Coulomb potential. In the actual computation 
we may e.g. put or ~ or1 or or ,,~ 1/2 E~ 7~iori where 7u is the occupation number of ~b i. 
Consistent with the above considerations, we further assume that the true Coulomb 
type two-electron integrals can be approximated in the following way: 

1~gi~gJ r~2 ~i~Pj) ~ (KPi]Jl KPi) ~" q " 

These approximations of the two-electron integrals can be summarized in the 
following relationship: 

( ' -  1 ) 
~oi~0j ~ @k@~ ~ (@ilJI @k) 6it + <~SjlJ [ ~l> ~)ik - -  qt~ikCSjt �9 (8) 



278 R. Ahlrichs and F. Driessler 

If we insert the approximation (8) into (7) we obtain a simple matrix equation 
for the cij which are to be determined. If we introduce the, matrices F and G 
(it should be noted that Fij and G~j are defined in terms of the approximate NO's 
of the respective iteration) 

F~j = (~Si[h + J] qSj), (9) 

G~j(E) = ( g o l n -  E l(oi(oj), (10) 

straightforward algebraic manipulations yield the desired matrix equation for C: 

G(E)+ CF + FC=(E +q) C. (11) 

3.1. Solution of Eq. (11) 

Let us first consider Eq. (7) from which (11) was obtained. Equation (7) can be 
written in the form 

\ k,l / 

If E is not an eigenvalue of H, then Eq. (7) or (7a) has the unique solution 
Ek,~ CkfOk(Ol = -  %,  i.e. k~ =0.  Nontrivial solutions 7 j r  exist only if E is an 
eigenvalue of H and in this case ~ is determined up to an arbitrary normalization 
constant. We may also consider (7a) as a system of linear equations for the cu 
which has to be solved under a constraint which prevents occurrence of the 
solution ~ = 0, e.g. 

(7q7/ )  = 1, (12a) 

k,l 

cij = 0 for any one pair i,j with (~i(~jI %> r 0. (12c) 

The constrained system of equations has a solution (which is now uniquely 
determined) only if E is an eigenvalue of H and ~ the corresponding eigenfunction. 

We now turn to Eq. (1 i). Due to the approximations introduced into (7), the 
system of Eqs. (11) has a unique solution C(E) for arbitrary E, provided 
E + q r f / +  fj [see Eq. (16) below], where fi denotes the eigenvalues of F. Since 
we may consider q as a parameter at our disposal we can always fulfill this condition. 
We consequently cannot uniquely determine E and C from Eq. (11). In order to 
make a selection of the possible solutions we could impose any of the constraints 
(12a-c). We have found that an even simpler procedure is quite useful in practice. 
Since the constraint (12c) will be fulfilled approximately if the corresponding Gij 
vanishes, as can be inferred from Eq. (11), we determine E from the requirement 
that G~j(E)=O for the corresponding i,j. We choose i , j= 1,1 for the singlet and 
i,j = 2,1 for the triplet case and thus determine E from Eq. (10): 

E,~/~---<%IHI q51<?~>/<%1~71<71> (singletcase) 
(13) 

E ~ / ~  = <%[HI 02~51>/<%102~1> (triplet case) 

and then solve Eq. (11) for E =/~. 
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It should be pointed out that the approximation (8) introduced into Eq. (7) 
in order to arrive at (11) as well as the approximation (13) does not affect the 
accuracy of the PNO's and the energy E if the iterative procedure converges. 
Equation (11) has the solution C = 0 if and only if G = 0 which in turn is equivalent 
(see Eq. 10) to 

( ~ ' o l H - E l  0 ,0 j )  = 0 .  (14) 

Since the two-electron functions 0i0j form a complete set in the Hilbert space 
of two-electron functions, Eq. (14) means that 

H%=E~eo 

i.e. ~0 is an eigenfunction of H with eigenvalue E. 
The solution of Eq. (11) is straightforward. Let U be a unitary matrix which 

diagonalizes F 

(U + F U)u = f~6~s. (15) 

We multiply (11) from the left and right by U + and U, respectively, and use 
U + U = 1 together with (15) to obtain 

(U + CU)u = (U + G U)u/EE + q - f~ - f j ] .  (16) 

The matrix C itself is then recovered from U + C U  according to 

C =  U(U+ C U )  U + . 

The computational steps to be actually performed within one iteration are as 
follows: 

1. Construct the matrix Gij = (~Po [H -/~[ 0i0j). 
Let us ?irst,consider the singlet case. If we insert the explicit expression (2) 
for ~o, we get 

G u = ((oi[K + (d~ + d~) hi (o~) - P,d,6u, (17) 

K = 2 d , K , ,  (18a) 
l 

where K t denotes the exchange operator of the orbital 0t: 

( f [ K l l  g )  = ~ f(1) 0,(1) 1 01(2) g(2) dz 1 dz 2 . (lSb) 
r12 

In order to get K we can interchange the construction of K z with the 
summation over t, i.e. we first construct the density matrix 

P = ~,ctt[0l) (01[ (19) 
l 

and then compute K from the density P. The construction of K thus requires 
the same computational work as the construction of a single exchange 
operator. In the triplet case the formula for G u is 

G u = ( O , I K - I  0~) + ( %1 h(1) + h(2) - EI0,0j>, (20) 

K -  = ,~, dzK~- �9 (21a)  
l 
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The explicit form of the one-electron term in (20) is somewhat lengthy but 
easily evaluated. The operator K-  is defined by 

( f ] K  l [g> = ~/(1) ~b I ( 1 ) ~  Ot(2) g(2) dr~ dz 2 
' 1 2  

(21 b) 

0,(1) 7112 g51 (2) g(2) dT 1 d'c 2 I/(1) 

[for the definition of ~0t, (p] see (4), (5)]. 
K-  is constructed analogously to K, one simply has to use 

P =  Zdt{IKpl> (~bl I -  Iq ?] > <q?tl} 

instead 9f (19). 
2. Compute E according to Eq. (13). 

In order to test convergence we also compute the variational energy 
<E> = <~o I HI 7"o>. Inserting the operators K and K-  defined in Eqs. (18) 
and (21) one immediately obtains for the singlet case 

(E)  = ~ <~b, I d, K + (t~/) 2 h l~b,), (22) 
l 

and for the triplet case 

<E>= ~ {(a~z)2[<~tlh[0,> + <~I Ihl01 >] +cT,@,lK- 10}> �9 (23) 
l 

3. After having determined K (or K-)  and/~ we set up the matrices G and F 
and solve Eq. (11) for C, see (16). In order to dampen possible oscillations 
of the iterative procedure we replace ci~ by 

cij 
(A  + " 

Convergence may also be improved by considering q in Eq. (16) as a 
parameter at our disposal. The appropriate values for A, B and q will be 
given in the next section. 

4. We finally renormalize 7/o +Zijcij0i0j and write this improved wave- 
function in terms of its NO's. 

The most time-consuming step is usually the construction of the 
operator K (or K-)  defined in Eqs. (18) and (21). The computational time 
required for this step does not depend, however, on the number of PNO's 
actually taken into account. Our method thus depends little on the number 
of PNO's considered, since it does not require to set up a CI matrix and its 
diagonalization. 

4. Applications 

We want to demonstrate the usefulness of our procedure by computations of the 
ground states of He (11S) and H 2 (11 + Z 0 ) as well as the 13Z + state of H 2. AS in- 
dications for the convergence properties of our method we list in Table 1 
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a) the approximate energy/~ [see Eq. (13)], 
b) the variational energy ( E )  [-Eqs. (22), (23)], and 
c) the norm of the matrix C, i.e. II C II -- (2i,j cij)2 ~. 
The details of our computations are as follows: 

Basis Sets and Distances 

Our basis sets consist of essentially uncontracted Gaussian type functions (for 
the construction of d- and f-type functions see [-12]). 

He (11S), 66 groups 

9s (from Ref. [13]), contracted in the manner (3, 1, 1, 1, 1, 1, 1) 
6p (exponents: 17.0, 7.5, 3.2, 1.4, 0.6, 0.25) 
4d (8.2, 3.5, 1.55, 0.65) 
3 f  (5.5, 2.2, 0.9) 

H2(llE~-), r =  1.4 a.u., 62 groups 

7s (from Ref. [,,13]), contracted (3, l, 1, 1, 1) 
3p (3.2, 0.9, 0.3) 
2d (2.4, 0.6) 
I f  (1.2). 

H2(13Z +) r = 2.0 a.u., 48 groups 

7s (as above) 
3p (2.1, 0.6, 0.2) 
2d (1.6, 0.4). 

Parameters for Optimal Convergence 

There are four "parameters" in our scheme that may be used for improving 
the rate of convergence: A, B, q and the average potential J. 

We found A and B to be of minor importance. The best choice wag B = 1, 
A = m i n  [-2, 1 +0.2 x (n -1 ) ] ,  where n counts the iterations. This choice saves 
one iteration at best, compared to A = 1. 

It is not worthwhile to vary q independently of J. If P denotes the density 
matrix used for the construction of J (of course P is dependent on the respective 
choice for J) we simply take q = Tr(PJ). So we are left with the problem to find a 
judicious choice for J. In the singlet case we choose J = J1 (see preceding section). 
In the triplet case, however, this would not be appropriate. A possible choice seems 
to be J =0.5(J1 - K 1  + J2 -K2) ,  where I and 2 denote the two strongly occupied 
orbitals. It turns out, however, that it is sufficient to approximate this potential 
by J---0.6 J1. This last potential was employed in our triplet calculation. It 
nevertheless should be stressed that even with the rather poor potential J = J1 
convergence is achieved within 13 iterations (as compared to 7 iterations with 
J = 0.6 Jr). This stability of our method with respect to variations of J bears 
important implications: in order to start with the NO iterations we have to know 
J and q beforehand, but J is dependent on the NO's. So one could argue that J 
had to be computed anew after each NO-iteration. Actually the following 
procedure suffices (see Table 1): 
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1 St iteration: diagonalization of h, 
2 nd iteration: diagonalization of (h + J) (Hartree-Fock like), 
3 rd to last iteration: NO iterations (J is kept fixed as computed in the 2 nd it.). 

In the calculations on H2 we slightly changed this scheme, i.e. we did one more 
diagonalization of (h + J) because in this way we saved one NO-iteration. 

Computer 7ime Requirements 

Most of our calculations were done on a UNIVAC 1108. In Table 1 we list the 
CPU-times for the H 2 ground state calculation. 

The total CPU-time in this case consists of: 

Integral evaluation g 90 %, 

NO construction ~ 10%. 

5. Determination of Approximate PNO's 

It has been shown in the preceding sections that for a two-electron system it is 
not worthwhile to perform a HF computation in order to use this approximation 
as a starting point for the solution of the Schr6dinger equation (1). For  an n- 
electron system (n > 2) it is, however, convenient to start with a conventional 
HF computation. In order to describe the behaviour of an electron pair in the field 
of the remaining ( n -  2) electrons one has to known, at least approximately, the 
field produced by these ( n -  2) electrons which is usually obtained by "freezing" 
these electrons in their HF-MO's.  If the HF-MO's  are already known one can 
make further simplifications which lead to a drastic reduction of the computa- 
tional work required to determine good approximations to the correct PNO's. 
If the PNO's  are used mainly to improve the rate of convergence of a CI treatment 
[8] it is anyway sufficient to have approximate solutions of the PNO equations. 
Even for other kinds of computations, like e.g. a PNO-CI or CEPA treatment 
[6, 73, it is generally sufficient to obtain PNO's with an accuracy that ensures 
that one looses less than about 1% of the corresponding pair correlation energy. 

For  the determination of approximate PNO's  we start from the two-electron 
HF  wave function 

~Pnv(1, 2) = ~o.(i) %(2) 

for the "closed shell" or intrapair case. In the following we restrict ourselves to 
the discussion of the intrapair case since the extension to the other cases (singlet 
and triplet interpair) is obvious. 
The pair function ~ is then approximated as 

~r/= d0/PHF -k Z diqgicPi (24) 
i 

with me additional constraint 

(~o, [~oi) = 0.  (25) 
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Due to the constraint (25), the pair function qJ as given in Eq. (24) cannot be an 
exact eigenfunction of H [i.e. we cannot fulfill the eigenvalue Eq. (1) exactly, not 
even in the restricted Hilbert space spanned by the actual basis set], since ~ does 
not contain single substitutions. The constraint (25) guarantees that the PNO's are 
orthogonal to the occupied HF-MO's which facilitates considerably a subsequent 
n-electron CI calculation. 

In order to determine the PNO's qh and the CI coefficients do and di we use the 
iterative procedure explained in detail in the preceding sections. The constraint(25) 
ist most conveniently taken care of if one expands the qh in terms of the virtual 
HF-MO's. 

In order to save computer time we take advantage of the fact tha t  d o ~ 1 
whereas the remaining di are usually small in absolute value, and approximate 
the matrix elements of the operators Kz for l > 0 in the following way: 

(~bi I Kll0j)  = (Oi I JI q3j) (6u + 6jL) - q6it'~jt �9 (26) 

We thus neglect the matrix elements (fp~[Ktl(oj) if i , j  and I are all different and 
use the identity 

(0ilg~lOj) =(~ i l  Jil0j) 

together with the approximations expressed in the relationship (8). Denoting by Ko 
the exchange operator of the HF-MO q~, under consideration, we obtain the 
following approximation for the matrix elements of G Efor the exact expression 
see Eq. (17)] : 

Gij ~ ( r  I doKo + (dti + dj) (h + J ) [ r  - (E, + q) di f i j .  (27) 

The use of (27) reduces the determination of the PNO's by means of the iterative 
procedure described above, see Eqs. (9)-(13), to simple matrix algebra. We note 
that the operators Ko and J = Jo (Coulomb operator ofq~,) are required anyway in a 
subsequent n-electron CI treatment. We have already pointed out that the most 
tedious step of our method is the evaluation of the operator K required to construct 
G, see Eq. (17). It is the advantage of the approximation (27) that we do not have to 
evaluate a two-electron operator in each iteration since Ko is computed only once. 

In order to see the effect of the approximations expressed in Eqs. (24)-(26), we 
may e.g. compare the exact energy (exact within the chosen basis set) obtained for 
H2 with the one computed in employing the above simplifications, see Table 2. 
The loss of ~ 0.6% of the corresponding correlation energy is in fact an excellent 
justification for our simplified method. In Table 3 we further compare our method 
with two other existing procedures [6, 19] for a direct determination of approxi- 
mate PNO's. As the other procedures have been described and discussed in the 
literature we shall not comment on them. 

The individual pair correlation energies computed by Meyer are between 1% 
and 5% poorer as compared to the present work, whereas the corresponding 
difference is 1.0-1.7% for the total valence shell correlation energy within the 
PNO-CI or CEPA. Some care is recommended, however, in comparing the 

results of Meyer with those obtained in this paper, since the construction of p- and 
d-type AO's is slightly different. 
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Table 2. Compar ison  of the exact and approximate procedure for determination of PNO's  

Molecule/state Basis set - (Eox.ct - E H F )  a - -  ( E a p p r o x  ' __ E H F )  a Error in % 

H 2 1 1 ~  5s, 3p 0.0385413 0.0382775 0.7 
5s, 3p, 2d 0.0401115 0.0396859 1.1 b 

He 11S 7s, 6p 0.0388143 0.0386421 0.45 
7s, 6p, 4d 0.0410352 0.0407270 0.75 b 

a EH F means  the Hartree-Fock energy within the given basis set. 
b These relatively large errors are partly due to the fact that our program for the determination of 

approximate PNO ' s  takes at most  30 NO's  into account. In calculations on larger molecules this 
means  no loss of accuracy because there is no possibility of employing such extended basis sets, 
i.e. in general the higher PNO's  do not  contribute significantly to the correlation energy. If we take 
into account an estimate for the importance of the higher PNO's ,  we arrive at an error estimate 
of 0.5-0.7 %. 

Table 3. Compar ison of CH 4 valence shell correlation energies as obtained by different methods a 

Pair b Ref. [6] Ref. [19] This work Improvement  
in % relative to 

[6] [19] 

Localized bb 0.03019 0.03014 0.03045 0.9 1.0 
bb'S 0.00588 0.00605 0.00620 5.0 2.5 
bb'T 0.00989 0.01018 0.01023 3.4 0.5 

IEPA 0.21538 0.21801 0.22032 2.3 1.1 
PNO-CI  0.17890 0.18077 1.0 
CEPA 0.18969 0.19182 1.1 

Canonical  IEPA 0.20265 0.20560 1.5 
PNO-CI  0.18040 0.18330 1.6 
CEPA 0.19197 0.19523 1.7 

Basis set denoted A' in Ref. [6] was used, containing a total of 47 groups. 
b bb denotes an intrabond, bb'S ans T a singlet and triplet interbond correlation energy, respectively. 

For  the precise meaning of IEPA, PNO-CI,  CEPA see I-6, 7], 

As regards the efficiency of the respective methods we can directly compare the 
present one with the "one PNO at a time method" [19], since both computations 
were performed on the UNIVAC 1108 using double precision arithmetic. The 
determination of the NO's for a IEPA treatment (one intrabond and one singlet 
and triplet interbond case) required 14 min (CPU-time) with the "one PNO at a 
time" method and 2 min with the present one. These timings are valid if the 
operators h (in general the effective one-electron operator) and K 0 [see Eq. (27)], 
which are required anyway, have already been constructed. Actually, the new 
method yields all PNO's  in the same time in which "one PNO at a time" yields 
about 3 PNO's. 

The present work thus confirms qualitatively the statement of Meyer that his 
method to determine approximate PNO's  guarantees an accuracy of roughly 1% 
in the total correlation energy. 
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Although a gain of 1-2 % of correlation energy may not be of much importance, 
in most applications it means a reduction of the energy error (due to the approxi- 
mations made in the determination of PNO's) by roughly a factor 1/3. This 
estimate is deduced from the results of Tables 2 and 3. 

We therefore expect the present method to yield more consistent and reliable 
results. 

6. Conclusions 

We have developed and applied an iterative Hartree-Fock like method to solve 
exactly the two-electron Schrtidinger equation for a given basis set without ever 
setting up a CI matrix. In all test cases the energy had converged to 10 - 7  a.u. 

within 8 iterations or even less. The most time consuming step in each iteration 
is the construction of the K matrix explained in Eq. (18) which is about as expensive 
as a conventional HF iteration within the same basis set. Our method appears to be 
an order of magnitude faster than any other procedure to determine directly PNO's 
and two-electron correlation energies. All methods proposed so far for this 
purpose [6, 11, 17, 20-23] require the repeated computation of the complete CI 
matrix in an iterative scheme. The computer time needed to set up the PNO-CI 
matrix is almost precisely N times as large as the time for the computation of a 
single exchange operator, where N is the number of PNO's taken into account 
(if we disregard utilization of symmetry). 

Since our method requires only the equivalent of 8 HF iterations, we can 
hardly imagine a considerably faster procedure. 

Our method to determine approximate PNO's, see Section 5, has proved 
useful during the last 20 months in a number of correlation energy computations 
of n-electron systems with the IEPA, PNO-CI, and CEPA type treatments 
[7, 24, 25]. 
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